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Abstract    An electroacoustic loudspeaker linearly coupled to an electric nonlinear shunt 

circuit acting as a nonlinear energy sink is considered. An analytical treatment enabling to 

analyze the behavior of the system around the 1:1 resonance at different time scales is 

performed. Extended form of Manevitch's complex variables is introduced, taking into 

account higher harmonics. Periodic and strongly modulated responses are well predicted. 

 

 

We consider an electroacoustic loudspeaker, shunted to an electrical nonlinear circuit 

(cubic nonlinearity is chosen to use the nonlinear energy sink concept developed in [1]) and 

subjected to an external periodically varying sound pressure. The dynamics can be described 

by the following equations [2]:  

 

 
 
                     

                            

          
                       

            
  

(1) 

 

where x and Vc describe the small displacement of the loudspeaker membrane and the electrical 

potential applied to the capacitor in the nonlinear shunt circuit, with       
      

  
. Mms, Rms and Cmc 

are the mass, the mechanical resistance of the moving bodies and the equivalent compliance of the 

enclosed loudspeaker. Bl is the force factor of the transducer, B represents the magnetic field 

magnitude and l stands for the length of the wire in the voice coil. Am stands for the pressure 

amplitude,   the angular frequency and S the diaphragm area. From the electrical side, Re and Le are 

respectively the DC resistance and the inductance of the voice coil and          is the back 

electromotive force. Rc, Lc and C are the inductor, resistor and capacitance of the corresponding 

nonlinear shunt circuit. k is the nonlinear coefficient (related to the design of the electronic circuit). 

Then we introduce the following non-dimensional time variable       with 

                and       . We denote        
      

  
. Then, scaling of parameters is also 

done by considering their physical range and by expressing them in function of a small parameter  

         .  

The Slow Invariant Manifold (SIM) of the system is generally obtained by treating the 

system (1) analytically after introducing the classical Manevitch's complex variables [3]. However, 

with the present system, we can show (by looking at results by direct numerical integration of the 

system) that the contribution of the third harmonic for        in the transient regime is not 

negligible and that the contribution of the third harmonic for       in the transient regime is 



 

negligible. That is why we propose to extend the method by introducing higher harmonics of the 

present system: 

 

 
 

              
    

  
              

           
     

  
(2) 

 

We also write the complex variables into their polar form as             . 

The analytical treatment allows to detect time multi-scale energy pumping between the 

primary system that describes the displacement of the loudspeaker and the shunt nonlinear 

circuit. It permits the detection of the SIM of the system at fast time scale, in addition to the 

equilibrium and fold singularities identification of the obtained reduced order system at 

slow time scales. Figure 1 (a) illustrates the fact that the extended method allows to better 

predict the SIM than the classical one. 

Figure 1 (b) shows the normalized admittance according to frequency for different cases of 

coupling. The classical shunt optimal resistor permits a significant decrease in the normalized 

admittance with a perfect absorption at the resonance. However, this approach is limited to a narrow 

range of frequency with no possible broadening control of the bandwidth. In the vicinity of 1:1 

resonance, an optimal response frequency of the system can be identified through a selected 

threshold. It corresponds to the maximum of energy that the primary system can reach during an 

energy exchange process with the NES. Thus, the optimal design defined in terms of normalized 

admittance is represented by the horizontal line. The added passive nonlinear shunt circuit allowed 

a significant decrease of the admittance, principally at the vicinity of the resonance frequency where 

the targeted energy transfer prevents the velocity to exceed a certain amplitude. Moreover, we can 

identify that the frequency bandwidth undergoes a 45% of relative increase. 
 

(a)                                                                  (b) 

 
Figure 1: (a) Comparison between the analytical classical SIM, the new one obtained by 

taking into account the third harmonic and the direct numerical integration of the initial system ; 

(b) Comparison of the normalized admittance as function of frequency between the cases of 

open circuit, optimal linear resonator and the shunt nonlinear circuits with two examples of 

nonlinear coupling (two different amplitudes for sound incident wave).  
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