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Perturbation methods, algebra and nonlinear vibrations

C.-H. Lamarque1, A. Ture Savadkoohi1

1Univ Lyon, ENTPE, LTDS UMR CNRS 5513
Vaulx-en-Velin, France

lamarque@entpe.fr, alireza.turesavadkoohi@entpe.fr

Abstract A technique based on exploiting Gröbner bases [1] of multivariable polynomials
for detection of periodic solutions is introduced. It is based on generating Gröbner bases
and verifying the possibility of determining/defining polynomials of approximated L2-norms of
solutions which belong to ideals generated by the Gröbner bases.

To track periodic solutions of nonlinear (quite often polynomial nonlinearities) smooth
second order differential systems (i.e. nonlinear vibrations of nonlinear mechanical systems)
perturbation methods have been developed (KBM averaging, Normal Form, Multiple scales,
etc.: [2–19]). These approximated methods lead to algebraic polynomial equations. One can
obtain approximations of periodic solutions by solving systems of algebraic equations with un-
known coefficients (coefficients of truncated Fourier series for examples) and given parameters.
Numerical techniques are used to solve these algebraic equations at given parameters’ values
such as Newton-Raphson methods, or continuation methods [20, 21] if solutions are tracked
versus one (or several, which is not usually the case in practice) parameter(s). Nevertheless
finding all solutions, and especially the isolated branches of solutions is always a challenge. For
systems with k degrees of freedom (dof), k ≥ 1, these perturbation methods tends to provide
approximated values of coefficients of truncated Fourier series and then to provide frequency-
response curves, finally the response corresponds to an approximation of L2 norm of a periodic
response of each dof. We present an approach based on using algebra methods. The main idea
is to exploit Gröbner bases of multivariate polynomials. Contrary to the approach of Grolet and
Thouverez [22], we do not try to obtain a parametrization of the nonlinear vibrations versus
one particular variable which satisfies a polynomial equation. Here, the main idea is to test
the belonging of a polynomial of the approximated L2-norm to the ideal generated by the set
of polynomial equations issuing from the analytical approximated response. We consider the
cases of single dof systems. Let us assume that a perturbation/approximated method provides
N polynomial equations. Then, a general algorithm is described to generate a Gröbner bases
and to test the possibility to constraint a polynomial (to be determined) of the approximated
L2-norm of the solution of single dof systems to belong to ideals generated by the Gröbner
basis. This approach is presented via some simple examples (Duffing oscillator at first) treated
by Harmonic Balance method as an example of the perturbation method. Then, we explain
how to extend the method to two dof systems. It is enough to understand possible general-
ization to n dof systems. The method could be extended to non polynomial nonlinearities.
Limitations/potential of the method are discussed. Moreover, open questions and perspectives
will be given.
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