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Abstract This paper presents a general methodology to predict the dynamics of geometrically
nonlinear electro-mechanical structures with piezoelectric transducers. Modal Reduced Order
Models (ROM) are built using a finite-element software thanks to a non-intrusive strategy.
The resulting system is solved with the Harmonic Balance Method coupled to an Asymptotic
Numerical Method (ANM). The present study focuses on the computation of the ROM and
its validation with experiments on a test structure, exhibiting bent nonlinear modes, internal
resonances and nonlinear response under parametric excitation.
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Figure 1: Photograph of the test structure. Deformed shape of the (0,1) mode and experimental
nonlinear frequency response in forced and free vibrations (backbone curve) with piezoelectric
actuation and detection.

Geometrical nonlinearities, due to large transverse displacements of thin structures, are
involved in a large range of applications. Among them, Micro-Electro Mechanical Systems
(MEMS) developments has been the focus of numerous studies, whose purpose is to master and
use the geometrically nonlinear behaviour (among others, see [5,7,8]). Recent advances in non-
intrusive ROM finite element modeling of nonlinear geometric structures offer new perspectives
to compute accurate ROM of structures with complex geometries [3]. An application on piezo-
electric nanobridges of such a method has been proposed in [2], with a home made finite element
code. The purpose of this paper is to extend this approach to a wider range of electromechan-
ical structures, composed of a thin elastic host structures equipped with several piezoelectric
patches, for actuation and detection of the vibrations. The modelling proposed here includes:
(i) the geometrical nonlinearities (ii) the laminated structure and (iii) the electromechanical
transduction with both converse and direct effects.

Following the ideas of [6] for the linear case and [2] for the case with geometrical nonlinear-
ities, we expand the finite element formulation on K eigenmodes of the structures, by writing



the displacement vector U(t) =
∑K

k=1 Φkqk(t), where Φk is the k-th. eigenvector with the
piezoelectric patches in short circuit and qk(t) the corresponding modal coordinate. It can be
shown that it verifies, ∀k = 1, . . . K, ∀p = 1, . . . P :
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In the above equations, P piezoelectric patches have been considered, whose electrical state is
defined by (V (p), Q(p)), respectively the voltage between the electrodes and the electric charge
contained in one of the electrodes. The above model is composed of four separated parts:
(1) the linear part (that depends on the k-th eigenfrequency in short circuit ωk, the modal
damping factors ξk and the modal mechanical forcing Fk), (2) the geometrical nonlinear part
(with coefficients βk

ij and γkijl), (3) the linear piezoelectric coupling (defined by the coupling

coefficients χ
(p)
k between mode k and patch p) and (4) a less classical part stemming from both

the geometrical nonlinearities and the piezoelectric coupling (of coefs. Θ
(p)
ij ), introduced in [2]

and responsible of parametric excitation effects in thin structures [7].
In this context, we propose an extension of the method introduced in [4] to compute all

coefficients of the above ROM and some validations. A first set of validations is obtained by
considering theoretical test cases for which analytical models are at hand (such as a hinged-
hinged beam with two symmetrically disposed piezoelectric patches that cover its whole length).
Then, some experiments are also considered, on a specially designed test structure, composed
of a circular brass plate equiped with eight piezoelectric patches (Fig. 1). Using experimental
continuation [1], the free (backbone curves / nonlinear mode) and forced vibrations are obtained
for the first axisymmetric mode (Fig. 1), for two companion asymmetric modes involved in
internal resonance and also for parametric excitation. In all cases, the piezoelectric patches are
used for both actuation and detection.
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