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Abstract We discuss new phenomena of energy localization and transition to chaos in the
finite system of coupled pendula without any restrictions on the amplitudes of oscillations. We
propose a new approach to the problem based on the recently developed Limiting Phase Trajec-
tory (LPT) concept in combination with a semi-inverse method. The analytic predictions of the
conditions providing transition to energy localization are confirmed by numerical simulation.

The system of the coupled pendula is the wide-expanded model in the various field of
science [1, 2]. We consider the nonlinear non-stationary dynamics of the sine-lattice [3], which
is very useful in some fields of the polymer physics and biophysics. We start from the Hamilton
function of the discrete system of coupled pendula with the harmonic-type bonds:
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)
, (1)

where ϕj is the displacement of the j-th pendulum from its equilibrium position and N is the
number of pendula. The dimensionless time t is normalized by the coupling constant while the
”gravity” constant σ can be changed in the accordance of the concrete problem.

It can be shown [4] that the non-stationary dynamics of the system under consideration can
be studied in the terms of the complex variables Ψj = (1/

√
2ω)(ωϕj + idϕj/dt). In such a case,

the energy of the nonlinear normal mode Ψj = ψj exp (−iωt) can be written in the form
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where J0 - the Bessel function of zero order and the eigen frequency of the nonlinear normal
mode with the wave number κ can be written as follows
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+ σJ1 (Q)

)
. (3)

Here, the amplitude Q of the oscillations are related to the modulus of the complex variable
|ψj| =

√
ω
2
Q.

Equation (2) with ψj = χ exp (iκj) can be considered as the Hamilton function corre-
sponding to the non-stationary dynamics if the amplitude χ is changed at the scale, which is
essentially larger than the period of the mode (T = 2π/ω). In particular, this occurs when
two mode with close wave numbers are excited simultaneously. In such a case, the equations
of motion can be obtained accordingly the rule:

i
ψj

dτ
= −∂Hr

∂ψ∗
j

(4)



(the asterisk denotes the complex conjugate function).
It can be shown that equations (4) admit the additional integral of motion X = 1

N

∑
j |ψj|2.

It was shown in [4–6] that the existence of integral X is extremely useful for the analysis of
the nonlinear normal modes (NNMs) interaction. Near the edges of the spectrum (3) this
process leads to the separation of the chain onto two domains, which are differed by the energy
concentration. So we can introduce the ”domain variables”

χ1(τ) =
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ψj(τ)
(
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π

4
)
)

; χ2(τ) =
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j

ψj(τ)
(
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π

4
)
)
.

Taking into account integral X one should write the domain variables in the form χ1 =√
X cos θ exp (−i∆/2), χ1 =

√
X sin θ exp (i∆/2) and express the domain occupation via the

value R = |χ1|2−|χ2|2 = X cos 2θ. The accurate analysis of hamiltonian (3) on the phase plane
∆, R shows that there are two threshold values of integral X (see fig. 1(a-c)). Before the first
threshold the modes are stable and the periodic redistribution of the energy between domains
occurs. If X exceeds the first threshold one of the modes losses its stability, but the energy
migration is still possible. Finally, above the second threshold the phase trajectories starting
at R = −1 can not achieve the value R = 1 and vise versa. It means that the energy putting
into one part of the chain can not be redistributed along it.
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Figure 1: Phase portraits (2) in the terms of variablesR and ∆ at different oscillation amplitudes
Q = π/10(a). Q = 2π/10 (b), Q = 3.2π/10 (c). σ = 1, N = 32.
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