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Abstract    This talk will discuss research aimed at analyzing, simulating, and 

experimentally exploring weakly and strongly nonlinear acoustic periodic materials. In 

particular, the talk will focus on the manner in which these materials can be used to create 

novel wave-control devices for the purposes of wave guiding and filtering. 

 

Weak and strong nonlinearity provide additional design degrees of freedom for achieving novel 

behavior in periodic elastic media. In weakly nonlinear media, perturbation techniques [1, 2] have 

recently been employed to uncover amplitude-dependent dispersion and spatial propagation – see 

Fig. 1 for representative results. These techniques asymptotically expand the displacement field and 

frequency (or, equivalently, time) and result in a cascading set of linear equations. Removal of 

secular terms yield updates to the dispersion relationship, while particular solutions at higher orders 

lead to multiharmonic content. Recent interpretations [3, 4] of these higher-order waves have shown 

that they can propagate through weakly nonlinear media with little to no generation of higher 

harmonics, similar to the invariance displayed by solitons.  

 

 

 

 

 

 

 

Experimental confirmation of these and other findings are an open area of investigation. Manktelow 

et al. [5] provided an indirect measurement of amplitude-dependent dispersion in a periodic string 

by placing evenly-spaced lead masses on a taut string, which was then excited by a shaker and 

measured using a laser Doppler vibrometer. The taut string exhibits a well-known cubic stiffening, 

which leads to positive shifts to the string’s dispersion with increasing amplitude. The analysis 

connected the system’s natural frequencies to the dispersion relationship in the first Brillouin zone 

using a phase closure argument. Measurements of the nonlinear backbones then resulted in 

amplitude-dependent dispersion curves – see Fig. 2. While successful, the experiment was limited 

Figure 1: (a) Weakly nonlinear periodic media give rise to amplitude-dependent dispersion and (b) 

amplitude-dependent spatial dead-zones for (left) small and (right) large amplitude waves. 
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to relatively small motions due to the string’s tendency to exhibit a whirling instability. 

Experimental studies have yet to appear which confirm the other richness observed both 

analytically and numerically. 

 

Strongly nonlinear periodic systems exhibit additional 

advantageous behavior, particularly as concerns non-

reciprocal wave propagation. Boechler et al. [6] showed 

that a granular chain with a defect near one end could 

passively break reciprocity due to a bifurcation involving 

the defect mass. More recently, strongly nonlinear systems 

incorporating hierarchical scales and asymmetry have been 

shown theoretically and experimentally to passively break 

reciprocity over a large range of impulse-like excitation [7]. 

Figure 3 illustrates representative results for such systems in 

which excitation on the left yields propagation, while 

excitation on the right leads to localization and no 

propagation. This is an ongoing area of research which is 

currently being extended to strongly nonlinear systems 

which passively break plane wave reciprocity.  
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Figure 2: Experimental apparatus and results: (a) lead bead and steel wire, (b) periodic string fixed 

to two upright aluminium beams, (c) experimentally measured backbone curve AB (black) and 

theoretical backbone curve for a simplified model (red). 

Figure 3: Experimental demonstration of 

non-reciprocity in a chain consisting of 3 

unit cells, each unit cell containing two 

scales coupled by strongly nonlinear 

stiffness. Excitation on the left end clearly 

shows propagation to the right, while 

excitation on the right remains localized, 

and no transmission to the left occurs. 


