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Abstract A nonlinear suspended cable excited by a boundary motion is attacked in two different 

formulations, i.e., the boundary modulation formulation and the quasi-static drift formulation. 

 

Cable’s nonlinear vibration [1] excited by a kinematic boundary motion of a support (deck or tower) 

is important for cable-stayed structures, and also, theoretically, an interesting fundamental dynamics 

problem. Indeed, it can be regarded as one of the two key building blocks  - the other one being the 

support dynamics excited by cable tension - for the boundary modulation concept [2], which allows  

to deal with the two-way (cable-support) coupled problem. This presentation focuses on two 

different approaches for attacking the first (support-to-cable) coupling problem, i.e., the boundary 

modulation approach [2] and the quasi-static drift formulation [3][4]. Their conditional equivalence 

will be analytically established, and differences, limitations will also be reported. Furthermore, an 

interesting logical connection between the common empirical shape function [3] and the new 

rationally derived one, will be discussed.  A cable with boundary motion is formulated as 
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where
0 is boundary motion inclination, w(x,t) and sd(t) represent the cable’s and the support’s 

displacements, respectively. The cable’s non-dimensional stiffness is , and initial sag is 

y(x)=4fx(1-x), where the sag-to-span ratio is f=b/l , with b, l denoting the sag and span. The cable’s 

boundary conditions at x=0 and x=1 are       00, 0, 1, cosdw t w t s t   . A single-mode cable is 

chosen, and m is its dominant frequency. The support motion is assumed to be 
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     , which means the cable is excited parametrically. 

In the boundary modulation formulation, one key assumption is introduced, i.e., the moving 

boundary is too weak to affect cable’s linear modal dynamics while its effects are only on cable’s 

higher order dynamics [2], i.e.,        2, dO w O O s O  . Thus, the moving boundary can be 

transformed analytically to a weak boundary modulation term on cable’s slow dynamics through a 

standard multi-scale expansion (    0 2, , ,j

jw x t w x T T ). After finding the solvability condition 

at the order  3O  , we get the corresponding reduced model 
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Here, Am is cable’s dominant modal amplitude appearing in     0i

1 2 .m T

m mw A T x e cc
  , and 

the boundary modulation coefficient    1 0 2 0, S S     can be analytically derived. 
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In the quasi-static drift formulation, as the cable’s standard boundary condition (fixed at both ends) 

has been relaxed, a modification induced by the moving boundary is introduced, i.e.,  

        0 0cosd m mw x s t x q t      (3) 

where the quasi-static drift function ѱ0(x) satisfies  0 0 0   and  0 1 1  , and the elastic mode 

shape  m x  satisfies    0 1 0m m   . Two empirical drift functions are  0 x x   [3]
 
 and   2
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[4].By substituting Eq.(3) into Eq.(1) and using Galerkin discretization technique, we get (similar 

ordering assumption is also used          2,m dO w O q O O s O  ) 
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Using a proper multi-scale expansion (    0 2, , 1, 2,3,j

m mjq t q T T j  ), the reduced 

model is established through finding the solvability condition 

 1 2

22
2 i6 4 2 5 22

2 3 02 2

10i i
3

2 3 2 2 3

Sm

Td
m m m m m

m m m m

a a a a aa
D B B a B B B Y e 




   



    
         

   
  (5) 

Here Bm is the cable’s dominant modal amplitude appearing in   0i

1 2 .m T
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  The 

coefficients  1 7a a  can be analytically derived. A full comparative study will be based upon these 

two different reduced models (Eq.(2) and Eq.(5)), as illustrated in Fig. 1 below. 

 

Figure 1: Different shape functions, and two formulation comparisons: μ=0.001, m= 4.21369, 1=0.0. ѱ0=x (*), 

ѱ0=Ѱ3/cos(β0) () 
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