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Abstract A robust methodology for deriving nonlinear reduced-order models from finite-
element models would enable powerful nonlinear techniques to be used to analyse large and
complex engineering structures. This work highlights why nonlinear modal coupling leads to
challenges in establishing such a methodology. Furthermore, using analytical insights gained
from considering simple mechanical systems, it is demonstrated how these challenges may be
overcome.

Two popular methods for deriving reduced-order models from finite-element models are the
Enforced Modal Displacement (EMD) and Applied Modal Force (AMF) methods [1]. These
two approaches can lead to significantly different results due to the way in which membrane-
type coupling is captured. Specifically, the EMD method often requires that membrane modes
are included in the reduced-order model (ROM) [2], whilst the modal parameters calibrated
using the AMF method can be sensitive to the magnitude of the force used [3].

In this work, the AMF method is applied to a simple, analytical model of a mass supported
by two orthogonal, linear springs, as shown in Figure 1(a). This mass, m, is free to move in two
degrees-of-freedom, x and y. The spring parallel to direction x has a length `1 and a stiffness
k1, whilst the spring parallel to y has a length `2 and a stiffness k2. The parameters used here
are m = 1 kg, `1 = `2 = 5 cm, k1 = 100 N m−1 and k2 = 15000 N m−1.
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Figure 1: A schematic diagram of the simple oscillator, used to motivate this work, is shown
in panel (a). The value of the ROM parameter, γ3, as the force scale factor, FS, is varied is
shown in panel (b).

The equation of motion of this system may be written
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where the modal coordinates q1 = mx and q2 = my have been substituted, and a Taylor expan-
sion, truncated at the third order, has been used to approximate the nonlinear terms. Note that
the linear natural frequencies are given by ω2

n1 = 100 rad s−1 and ω2
n2 = 15000 rad s−1 – hence

the second mode, with a significantly higher frequency, resembles a membrane-type mode.
These equations of motion will be treated as the full-order system (typically represented by a
finite-element method).

To find a reduced-order model describing the dynamics of the first mode of this system, q1,
a suitable parameterised model must be chosen. As the nonlinearity in this full-order system
contains quadratic and cubic terms, it appears reasonable to reduce the system to a model
containing similar nonlinear terms, i.e.
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The AMF method is employed by applying a series of static loads to the first mode of the
full-order model (whilst setting the second modal forcing, fq2, to zero) allows the nonlinear
parameters of the ROM, γ2 and γ3, to be estimated. The blue dots in Figure 1(b) show the
estimated value of the cubic parameter, γ3, as the magnitude of the static loads applied to the
full model vary (using scaling FS). This clearly shows that this nonlinear parameter is sensitive
to the magnitude of the applied load, and that the process for calibrating the ROM is not
robust.

To understand the cause of this variation, we return to the equation of motion of the second
mode, Eq. (2). When the system is static and no load is applied, q̈2 = fq2 = 0, and hence the
only remaining variables in Eq. (2) are the modal displacements q1 and q2. As such, Eq. (2)
represents a constraint between q1 and q2, which may be written
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where it has been assumed that the function f(q1) may be approximated using a polynomial.
If this polynomial, describing q2 in terms of q1, is truncated at the third-order, substituting this
into the first equation of motion, Eq. (1), gives

q̈1 + ω2
n1q1 + γ2q

2
1 + γ3q

3
1 + γ4q

4
1 + γ5q

5
1 + γ6q

6
1 + γ7q

7
1 + γ8q

8
1 + γ9q

9
1 = fq1 . (5)

This is representative of a 9th-order ROM (i.e. a ROM where the nonlinearity is expressed up
to the 9th-order) which is in contrast to the 3th-order ROM shown in Eq. (4). The variation of
the γ3 parameter of the 9th-order ROM, with the force scale factor FS, is represented by a red
dots in Figure 1(b). This clearly shows that the 9th-order ROM is significantly more robust to
variations in the force scale factor than the 3th-order ROM.

When applying the AMF method, the 3th-order ROM is typically adopted. These results
demonstrate that, due to the strong coupling that may exist between modes that are well-
separated in frequency, the parameters of the 3th-order ROM may vary significantly with the
magnitude of the applied load. Furthermore, these results suggest that a higher-order of non-
linearity should be adopted in the ROM in order to account for these coupling effects.
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