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Abstract A new definition is proposed for the Nonlinear Normal Modes, close to the one de-
veloped by Bellizzi & Bouc [1]. Theses NNMs are the used to evaluate the forced responses using
a modal phase parametrization rather than the classical forcing frequency parametrization.

The basic dynamic equation considered for nonlinear dynamics writes
Mii + Cu + Ku + f (u,0) = f.(t) (1)

where f,; gathers nonlinear forces while f, denotes a periodic external forcing.

Damped nonlinear normal modes (ANNMs) are the solutions of Eq. (1) when the forcing f,
is nullified [3]. Several methods to compute these solutions where proposed. The one exposed
and used here is close to the amplitude and phase parameterization described by Bellizzi and
Bouc [1]. Displacements u and velocities v have the same dependency to an amplitude a and
a dimensionless time 7 than in [1] but the amplitude decay function 7 and the pseudo circular
frequency w only depend on amplitude here:

Once injected in Eq. (1), and adding v = 0 condition leads to
ap’(a, 7) = n(a)ap®(a, 7) + o (Datp*(a, T)n(@)a + D" (o, T)w(a)) (3a)

M (n(a)atp®(a, 7) + o (Datp”(a, 7)n(a)a + D" (a, T)w(a))) +
C (Ozlpv(a, T)) +K (aqpu(aa T)) + fnl(oﬂpu(o(, 7-)7 a¢v<a7 T)) =0

Instead of seeking for the various quantities as a power series in a and a Fourier series in 7

which leads to a very large system of equations, a “point-by-point” approach is preferred in the
u(®

(3b)

o dimension: a branch is defined by successive points gathering o (modal amplitude), Q

(Fourier coefficients for zb“(l)), Q”m (Fourier coefficients for 1#”(2)), 7% (modal amplitude decay
function) and w® (modal circular frequency). While D,e = de /O quantities can be evaluated
exactly via Fourier series derivation, D,e = 0 @ /O« is evaluated using a linear interpolation
between the previous and the current points. The two necessary normalization conditions are

defined by

P (a,0) " Mep" (e, 0) + 9" (@, 7/2) Mgp*(a, 7/2) = 1 (4a)
(e, 0) ' Myp*(a,7/2) = 0 (4b)

Lastly, points on the branch are index by their (discrete) arclength s:
s — g1 4 ( (o — a(z‘—l))Q + () — n(z‘—l))? + (Wi — w(z‘—l))Q (5)
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Figure 1: Tllustration: modal synthesis around first mode for a 2-dofs system.

Once a ANNM is calculated, it offers a first understanding of the structure as well as a rough
prediction of its behavior when forcing is introduced. It can also be used to compute the forced
response effectively using modal synthesis.

Let us assume that f.(¢f) = f,, cos(wt). Using a dimensionless time 7 = wt and denoting
u, (1) =u(t), o =de /dr, Eq. (1) becomes
w*Mu” + wCu. + Ku, + fyy(u,,wul) = f._(7) (6)
Then, u, is naturally sought as
u (1) = (s, 7+ @) (7)
where the 2 unknowns are s which defines the location on the ANNM branch and ¢, the phase

with respect to the excitation as in the linear case.
Equations used to find these 2 unknowns are

2m 2w
/ r(7)a(s, 7+ ¢)dr =0 and / r(7) (wi'(s, 7+ ¢)) dr =0 (8)
0 0
with r(7) being the residue of the dynamical equation (6):
r(7) = w’Mu’ + wCu, + Ku, + f(u,,wu)) — f. (1) (9)

This system can be solved using any continuation method in the variables w, s, ¢.

Another approach is to consider that, as in the linear case, ¢ will vary from 0 to —m with
a continuous decrease along the frequency function response (FRF). Hence, the FRF can be
computed by solving for w and s only for discrete values of ¢ €] — m, 0] avoiding the use of
a continuation scheme. This approach was applied to compute the first mode and the FRF
around this first mode for the 2-dofs example used by Touzé and Amabili [4] and return very
accurate results as illustrated in Figure 1 for which reference results are HBM results with up
to 5 harmonics. This phase parameterization can be very interesting in the stochastic case to
link points of different realizations as explained in [2] for the linear case.
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