
7th International Conference on Nonlinear Vibrations, Localization and Energy Transfer

July 1-4, 2019 - Marseille, France

Phase driven modal synthesis for forced response
evaluation

E. Sarrouy1

1Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France
emmanuelle.sarrouy@centrale-marseille.rr

Abstract A new definition is proposed for the Nonlinear Normal Modes, close to the one de-
veloped by Bellizzi & Bouc [1]. Theses NNMs are the used to evaluate the forced responses using
a modal phase parametrization rather than the classical forcing frequency parametrization.

The basic dynamic equation considered for nonlinear dynamics writes

Mü + Cu̇ + Ku + fnl(u, u̇) = f e(t) (1)

where fnl gathers nonlinear forces while f e denotes a periodic external forcing.
Damped nonlinear normal modes (dNNMs) are the solutions of Eq. (1) when the forcing f e

is nullified [3]. Several methods to compute these solutions where proposed. The one exposed
and used here is close to the amplitude and phase parameterization described by Bellizzi and
Bouc [1]. Displacements u and velocities v have the same dependency to an amplitude α and
a dimensionless time τ than in [1] but the amplitude decay function η and the pseudo circular
frequency ω only depend on amplitude here:

u(t) = α(t)ψu(α(t), τ(t)), v(t) = α(t)ψv(α(t), τ(t)), α̇(t) = η(α(t))α(t), τ̇(t) = ω(α(t)) (2)

Once injected in Eq. (1), and adding v = u̇ condition leads to

αψv(α, τ) = η(α)αψu(α, τ) + α (Dαψ
u(α, τ)η(α)α +Dτψ

u(α, τ)ω(α)) (3a)

M (η(α)αψv(α, τ) + α (Dαψ
v(α, τ)η(α)α +Dτψ

v(α, τ)ω(α))) +
C (αψv(α, τ)) + K (αψu(α, τ)) + fnl(αψ

u(α, τ), αψv(α, τ)) = 0
(3b)

Instead of seeking for the various quantities as a power series in α and a Fourier series in τ
which leads to a very large system of equations, a “point-by-point” approach is preferred in the

α dimension: a branch is defined by successive points gathering α(i) (modal amplitude), Qu(i)

(Fourier coefficients for ψu(i)), Qv(i) (Fourier coefficients for ψv(i)), η(i) (modal amplitude decay
function) and ω(i) (modal circular frequency). While Dτ• = ∂ •/∂τ quantities can be evaluated
exactly via Fourier series derivation, Dα• = ∂ • /∂α is evaluated using a linear interpolation
between the previous and the current points. The two necessary normalization conditions are
defined by

ψu(α, 0)TMψu(α, 0) +ψu(α, π/2)TMψu(α, π/2) = 1 (4a)

ψu(α, 0)TMψu(α, π/2) = 0 (4b)

Lastly, points on the branch are index by their (discrete) arclength s(i):

s(i) = s(i−1) +
( (
α(i) − α(i−1))2 +

(
η(i) − η(i−1)

)2
+
(
ω(i) − ω(i−1))2

+
∣∣∣∣∣∣Qu(i) −Qu(i−1)

∣∣∣∣∣∣2 +
∣∣∣∣∣∣Qv(i) −Qv(i−1)

∣∣∣∣∣∣2 )1/2
(5)
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Figure 1: Illustration: modal synthesis around first mode for a 2-dofs system.

Once a dNNM is calculated, it offers a first understanding of the structure as well as a rough
prediction of its behavior when forcing is introduced. It can also be used to compute the forced
response effectively using modal synthesis.
Let us assume that f e(t) = f e0 cos(ωt). Using a dimensionless time τ = ωt and denoting
uτ (τ) = u(t), •′ = d • /dτ , Eq. (1) becomes

ω2Mu′′τ + ωCu′τ + Kuτ + fnl(uτ , ωu
′
τ ) = f eτ (τ) (6)

Then, uτ is naturally sought as
uτ (τ) = ũ(s, τ + φ) (7)

where the 2 unknowns are s which defines the location on the dNNM branch and φ, the phase
with respect to the excitation as in the linear case.
Equations used to find these 2 unknowns are∫ 2π

0

r(τ) ũ(s, τ + φ) dτ = 0 and

∫ 2π

0

r(τ) (ωũ′(s, τ + φ)) dτ = 0 (8)

with r(τ) being the residue of the dynamical equation (6):

r(τ) = ω2Mu′′τ + ωCu′τ + Kuτ + fnl(uτ , ωu
′
τ )− f eτ (τ) (9)

This system can be solved using any continuation method in the variables ω, s, φ.
Another approach is to consider that, as in the linear case, φ will vary from 0 to −π with

a continuous decrease along the frequency function response (FRF). Hence, the FRF can be
computed by solving for ω and s only for discrete values of φ ∈] − π, 0] avoiding the use of
a continuation scheme. This approach was applied to compute the first mode and the FRF
around this first mode for the 2-dofs example used by Touzé and Amabili [4] and return very
accurate results as illustrated in Figure 1 for which reference results are HBM results with up
to 5 harmonics. This phase parameterization can be very interesting in the stochastic case to
link points of different realizations as explained in [2] for the linear case.
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